Publication performance evaluation for academic institutes by their contributions to the most visible publications across multiple fields

Max Kuan
Assistant Professor
National Taiwan University of Science
and Technology

We report a method for evaluating

- the publication performance of
 - Academic papers, or
 - Patents, etc.
- an entity
 - academic/research institutes, or
 - companies, etc.
- across a number of fields
 - engineering, life science, etc.
- using no. of publications (quantity) and no. of citations (quality)

Concepts behind the method

- Based on a concept called *elite set* (proposed by Vinkler, P.)
- Using h-index to determine the elite set
 - Elite set is also similar to the so-called h-core
 (proposed by Rousseau, R.) in h-related research
- It is called *Most Visible Publications* (MVP) in this study.
- Publication performance is measured by an entity's contribution to a field's MVPs

Elite set

- The relatively most important publications of a journal are jointly referred to as the journal's elite set (Vinkler, P.)
 - Use elite sets to determine the eminent journals
- This concept is not new
 - Highly cited paper: Papers in the upper first percentile with respect of their year of publication and subject area
 - Academic Ranking of World Universities (ARWU):
 no. of Nobel prize winners as a factor

Geometric Interpretation of elite set

Publications from an entity ranked in descending order

Geometric Interpretation of elite set

h-index

Most visible publications (MVPs)

- Our idea of elite set is different from h-core
 - MVPs = The set of publications having citations ≥h-index
- For example, an entity has 5 publications with citations 5, 3, 3, 3, and 1
 - -h-index=3, h-core = {5, 3, 3}
 - $MVPs = \{5, 3, 3, 3\}$

Our evaluation method

- For an entity's performance in a field
 - Determine the field's h-index
 - Determine the MVPs of the field using its h-index
 - For an entity
 - Determine its **contribution** to the field's MVPs
 - Two approaches
- For an entity's performance across a number of fields
 - Combine the entity's performance in each field

A field's h-index and MVPs

Publications belonging to a field ranked in descending order

An entity's field performance

- An entity's performance in a field is measured by its contribution to the field's MVPs
- Two approaches
 - Contribution by no. of MVPs
 - Contribution by no. of citations of the MVPs

Contribution by no. of MVPs

- Say a field's MVPs contains 100 publications and they receive total 1,000 citations
- for two entities i and j
 - if 50 of the 100 MVPs are produced by entity i
 - Entity *i* contribution = 50%
 - if 10 are produced by the entity j
 - Entity *j* contribution = 10%
 - We therefore suggest that entity i should be considered to have better performance than entity institute j.

Contribution by no. of citations of the MVPs

- Say a field's MVPs contains 100 publications and they receive total 1,000 citations
- for two entitiy i and j
 - if 50 of the 100 MVPs are produced by entity i
 - The 50 publications receive 300 citations
 - Entity *i* contribution = 30%
 - if 10 are produced by the entity j
 - The 10 publications receive 400 citations,
 - Entity *j* contribution = 40%
 - We therefore suggest that entity j should be considered to have better performance than entity institute i.

Contribution Matrix

N fields

Contribution Matrix

N fields

M entities

Sum=1

Sum=1

Sum=1

Usage of Contribution Matrix

M entities

Entity 2's Contribution to field 2 can be interpreted independently without knowing the other entities' contributions

Juiner

Sum=1

Sum=1

Usage of Contribution Matrix

M entities

Sum=1

 R_{1N} R_{2N}

The relative performance comparison of entities 2 and M can be achieved.

Sum=1

Sum=1

Usage of Contribution Matrix

Cross-field performance

A sample result

		Individual field (Contribution by publication share)					
	Cross-field	Agr	Cli	Eng	Lif	Phy	Soc
Harvard U.	9.85,1	5.49,5	13.69,1	4.03,7	16.31,1	2.97,8	16.60,1
UC - Berkeley	5.96,2	8.79,1	0.91,19	12.63,1	2.29,14	6.96,2	4.15,8
MIT	5.52,3	0.73,16	0.52,21	10.75,2	7.16,2	5.25,3	8.68,3
Stanford U.	4.70,4	3.30,9	3.52,8	8.33,3	4.73,6	3.42,7	4.91,6
UW - Seattle	3.87,5	3.30,9	5.22,4	4.84,5	3.81,7	4.91,5	1.13,14
Johns Hopkins	3.80,6	1.47,14	7.69,2	2.15,11	5.03,5	4.22,6	2.26,11
U.							
UC - Los	3.58,7	1.10,15	4.69,6	5.65,4	2.90,12	2.63,10	4.53,7
Angeles							
UC - San	3.53,8	3.30,9	4.82,5	2.69,9	6.55,3	2.28,13	1.51,13
Diego							
U. of	3.36,9	0.00,18	3.39,9	0.54,17	3.05,11	2.97,8	10.19,2
Pennsylvania							
UMich - Ann	3.25,10	1.47,14	4.56,7	2.15,11	2.59,13	3.42,7	5.28,5
Arbor							

專利情報與資訊計量研究室

Patent Intelligence & Informetrics Lab.

For the two types of contributions

- Contribution using publication share
 - rather indiscriminating when it is applied to single-field evaluation.
 - This shortcoming disappears when it is applied to cross-field evaluation.

For the two types of contributions

- Contribution using citation share
 - is rather discriminating in single-field evaluation
 - it may be biased by entities having a few extremely highly cited publications.
 - Such bias is lessened in cross-field evaluation.

For the two types of contributions

- For single-field evaluation
 - We suggest using contribution by citation share
- For cross-field evaluation
 - we suggest to use
 - Contribution by publication share because it is simpler
 - The best mode would be to use both, and an entity is indeed has a better publication performance if it is considered as such by both types of contributions.

Life is not easy: two issues

- Multiple affiliations
 - In real life, it is common that a publication has multiple affiliations.
- Cannot differentiate entities having field contribution equal to zero, and entities having cross-field contribution equal to zero

Differentiate entities with zero contribution

N fields

M entities

entities with zero contribution

Differentiate entities with zero contribution

N fields

M entities

Remove the publications of these entities from these fields

Recalculate the fields' h-indices and determine again their field contributions

entities with zero contribution

Thank You